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WHAT "FUZZY H.0.S." MAY MEAN
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-Henr! M. Prade¥®, Lucia M. Vaina* -
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ABSTRACT

\k%e intended obJective of this paper Is the investigstion of the possible fuzzy
extensions of H.0.S. methodology. After of brief recall of this methodology and
a detailed presentation of the fuzzy concepts which are needed, the notion of
; .fuzzy'da+a typs is ihtroduced and dliscussed, along with. its consequences for con- §
3 o trol maps. The general question of (fuzzy) rellability Is then dealt wt+?)‘;£, ;
e : ‘ 3

. INTRODUCTION

Bt W S

Higher Order Software (HOS) has been developed by Magaret Hamilton and Saydean ;
Zeldin [4] as a methodology for the specification of reliable software systems. E
During the time of this development, fuzzy set theory - initiated by Lotfi
Zadeh [12] fourteen years ago - has recelved more and more attention from re-
3 searchers, and many valuable contributions to fuzzy system theory have appeared.
- The reader interested in general monographles about fuzzy sets and systems Is

[ addressed to the books by Negolita and Ralescu [[10], Kaufmann [9] and Dubois and
Prade [3].
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However, no work has yet been published dealing with the specification of fuzzy
systems. Our paper Is presented as an initlal attempt to investigate this probliem.
Although HOS is not the only existing methodology for the specification of large
computer-based systems, I+ seems that, based on the nofion of function, HOS is a
strong candidate to begin Investigation into this problem.

After a presentation of the basic theoretical constructs used in HOS - data types,
functions and control sTrucTures - several Important notions of fuzzy éef theory,
such as fuzzy funcflon; are reintroduced and discussed. DifferpnT kinds of fuzzy
data types, as well as their consequences for control maps, aré then described.
Finally, the problem of reliability of fuzzy systems is considered.

Before beginning, 1t must be emphasized that "fuzzy specification of systems" and
A specification of fuzzy systems' do not mean the same thing. "Fuzzy specification"
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can be desciibed as "approximate" or even "incomplete specification" (which is not

a good means of obtalning a reliable system), while "speciflication of fuzzy systems"
refers to the specification of systems which have a behavior only approximately
known or which are too complex to be‘described in great detail.

- 1'l. MAIN CHARACTERISTICS OF HOS

The specification of computer-based systems in HOS is done independently of imple-
mentation. The software system is formalized In terms of three theoretical
constructs:

- data types

- functions/operations

- control maps.

A data type, roughly speaking, represents the kind of entities that the system under

'-mconsldera+lon manipulates, or, in other words, operates on or produces. A type of

value, though, has no meaning by itself. The set of operations which are usuatly
performed and the set of axioms which these operations must satisfy determine the
meaning of the data +9pe.

Thus data types of algebraically specified Iin HOS.  da‘a type consists of [8]:

- a set of objects, called its members;

- a set of functions, called its primitive operations, whose domains and
ranges ame specifiéd. Either the domain or the range of each primitive
opera+loh_mus+ include (possibly within some Cartesian product) their own
set of members of the data type; and .

- a set of .axioms which describe +he way the primitive operation interact
@i+h one another and perhaps with other functions.

The concept of data type has been extensively discussed by Cushing in [1]. Several
examp les are provided in (1], .such as "Stack" or "Time".

Moreover, each data type has, as a member, an ideal element, namely REJECT, which
is the output of any operation when i+ has no genulne output of the expected sort
(i.e., when some members of the domain of the operation are not ampped onto members
‘of the range). In AXES [6], which is & Specification Language based on HOS
methodology, six very general data types are prespecified: Boolean, Property,
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Set, Natural Numbers, Integer and Rational Number. They are the intrinsic types of
AXES. The functions (or operations) are thus the entities that operﬁfo on or
produce members of data types.

Cpnfrol structures determine how a function relates to those into which It is de-
cémposed. Obviously only non-primitive operations can be decomposed by means of
control maps. |f a desired function on a type cannot be defined In terms of pri-
mitives, it must be added to the operation specification of the type, thus creating
a new data type. AXES, however, allows us to write functions (which are repre-
sentable as control maps) also as derived operations: they are then characterized
by assertions that speclfy their interactive behavior with ofher functions (which

.have been already characterized).

There are three primitive control structures which are used in HOS: (see [8],[1J)

- composition

DIIC TAB

y=h(x) Accession For V
NTIS GRA&I
|

_ Unannounced ]
y=g(z) z=f(x) Justification

- . =

By

set partition:

_Distributiox/
y=f(x) : Availqbilitv Codes

‘Avall and/or

Digt ' Ypoeial

P(x) TP(x) AL
A

y=f'(x) y=f''(x)

where P is a predicate defined on the domain of f. (P and = P induce

a partition of this domain,)

~ class partition:

y-(yl,y2)=f(x) ~ with x—(x|, 2):

e Epat

e AL L P - %t am

Emiysin

SR AT g A2 i




A system whose control structure is decomposable in terms of these three primitive
control structures is guaranteed to be reliable In the sense that the six axioms
on which HOS Is based [4] are then satisfied. (These axioms, which must not be
confused with the axioms of a given data type are derived from a set of empirical
data and considerations.) AXES [6] Is'able to express a specification in a form

which Is equivalent to an HOS control map. A representative application of HOS

y :
g ;o methodology may be found in [7], where a very complex system In analyzed and
ﬁ specifled.

J

i 111, FUZZY SETS AND FUZZY FUNCTIONS

Because: HOS methodology attempts to défine a system as a function, the concept of y

I
i f fuzzy function seems to be necessary to deal with any fuzzy extension of HOS.
(. Surprisingly, there are very few published works devoted to this toplic in the
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fuzzy set {iterature. Some of the Ideas presented here have expliclitiy appearad
for the first time in [3] (which Is not available yet). ‘

After a./brief recall of the difference between fuzzy set and possibliity distribution

iR el TR

and of the notlion of fuzzy relation, three general kinds of mappings, gathered under
the label '"fuzzy functlons" are Introduced. The composition of thase different

e

k - 4
. fuzzy functions is described. The notlon of the fuzzy partition of a set Is then ﬁ
{ presented. f%
LI ' Nk
i I.  Fuzzy Set versus Possibility Distribution. Fuzzy Relation. }3

v , Let X be a universe and A be a fuzzy set on X. A Is viewed as a subset of X without

s = AT

precise boundaries. For all xeX, uA(x) Is the degree of membership of x to A.
The fuzzy set A is thus defined by the pairs

u,uﬂxn, x € X .

RS et T A

1+ 1s assumed here that the valuation set is the interval [0,1], 1.e., uA(x)e:EO,I].

Let v be a varlable which takes Its values on X. |f E Is a non-fuzzy subset of X,

to say that v Is an element o E Indicates that any element in E could possibly be

{ a value of V. In this way, the statement "v Is an elemeat of E" Induces a possibllity
1 distribution m over X which associates to each xe X the possiblility II(v=x) that

: i X Is that value of v. _
S . | 1fxeE
S Mlv=x)=m(x)=

0 otherwise.
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This point of view may be.extended to a fuzzy set A in the following way:

H(vnx)-n(x)=uA(x) .

fhus a fuzzy set Induces 5 possibility distribution. A Is said to be a fuzzy
restriction on the (possible) values of v. The concepts of possiti!ity and of
possibility distribution, which must not be confused with those of probabllity
and probablility distribution (there Is no additivity axiom in possibility theory),
have been recently Introduced by Zadeh in [14],

Let us consider an example. X is the real |ineTR. A fuzzy number M onTR is a
fuzzy set on*fR, . such that:

-~ Its membership function M Is contlnuous;

is normalized: 3 meyTRr, ua(m)=l;
is convex: ¥ X€ YR, Vzeyr, Vyelx,z], Ux (V)5 min(us(x),ue(2)) o

ﬁ"‘.
fi

m may be viewed elither as a fuzzy set of real numbers clustered around m, or as a
possibll1+y distribution on the value of some ill-known quantity.

i Rt i O b AR

A fuzzy relation R on the Carteslan product XxY is a fuzzy sef on XxY:
((x,¥), Uelx,¥)), xeX, yeyY .
uR(x,y) may be viewed as expressing the strength of the link from x to vy.

2,  Fuzzy Functiuns / Fuzzy Operations.

Classically a function f Is a many-one correspondence between two sets, namely the
domain X and the range Y or the function: For all xeX, there exists at most one
yeY such that y=f(x). |f there are several y such the y=f(x), f Is just a ralation.
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"Fuzzy function" can be understood In several ways according to where fuzziness lies.
From an interpretative polnt of view, three main types of fuzzy functions may be
considered:

o R T v,

- ordinary functions havﬁng fuzzy properties or satisfying fuzzy consfralnf;;

- functions which Just have fuzzy arguments and fuzzy'Valueé, without being
fuzzy themselves; they are ordlinary functions between sets of fuzzy sets,

- 11l-known functions which even map non-fuzzy arguments on fuzzy values.
From now on, the expression "fuzzy function" will be used only for this E
last kind.
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. Hyb?%dafion between these three basic types are possible.

N.B. Functions which map fuzzy arguments on non-fuzzy values, for instance, the
function -
(fuzzy parts of T‘R):ﬂ(m) it TR

M —— lnf{m,um(m)=l }

are not considered in the following. These functions "defuzzlfy".
The three kinds of functions related to fuzziness are now reviewad.

a) Fﬁzzl!y constrained functions:
This kind of function was first considered by Negolta and Ralescu [10].

Let f be an ordinary function from X to Y. Let A and B be two fuzzy sets of X and
Y respectively. A and B are referred to respectively as the fuzzy domain and the
Fuzzy range of f If and only If:

(1) ¥ xeX, such that f(x) Is defined, uB[f(x)] 2u, (x).

Let us conslider an example (taken from [3]):

"Big trucks mus+t go slowly.": X is the set of trucks, Y Is a set of speeds, f
assigns a spesd |Imit f(x) to each truck x. A are the fuzzy sets of big trucks
and low speeds respectively. The above Inequality means: "The bigger the truck,
the lower Its speed timit." |t ic shown In (3] that proverbs having the same
syntactic structure as the above regulation may be also modelled by functions with
fuzzy domaln and fuzzy range.

The composition of such functions Is very easy. Let g be a function from Y to Z
with a fuzzy domain B and a fuzzy range C such that uC[g(y)]ZUB(y) where ye Y,
Then gof  is a function from X to Z with a fuzzy domain A and a fuzzy range C since

uglf I 2uy (), uLgly)I2ugly) anfi y=f(x)

entall :
' uc[(g 0 f)(x)]ZUA(x) .

N.B. More genzsrally, the composition of g with f yield a function with a fuzzy

domain =nd a fuzzy range as soon as the fuzzy range B of f is included In the fuzzy
range B' of g, I.e., uB.(y)ZuB(y) with y=f(x).
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Binary operations are parflcujar cases of functions. They are mappings from a
Cartesian product XxX to a set Y (possibly equal to X). Let us denote by * such
an operation. -Before Negoita and Ralescu C10] considered the above notion of
fuzzily constrained function, Rosenfeld [I!] had Introduced the following defini-
*jons, when Y=X:

o A fuzzy set A of X Is closed under * if and only If

I3 * ’
(2) v X X, vxzex, uA(xl x2) z_min(uA(xl),uA(xz))

which is exactly the same as the fnequal'ty (1) for the fuzzlly constralned func-
tions, as the Cartisian product AxA is defined as

x, e X,
J

o If (X,*) is a group, A Is a fuzzy subqroup of X If and only if the above

((x,,xJ), mln(ua(x'),uA(xJ))), )<iex,

inequality (2) Is satisfied and¥xeX, uA(x )> uA(x) holds, where x 'xse and e
is the Identity.

The last inequality means the mapplng -><--‘--><'| Is a fuzzily constraint function.
By symmetry I+ entalls uA(x-')=uA(x).

N.B. If X Is a real Eucllidean space, let us consider the operation: 13:

X| le2=Axl+(l-A)x2 with Ae[0,1].  We see then that the condition of convexity of
a fuzzy number M is nothing but the fact that i Is closed under lA' v ael0,1].

Remarks:

I. The same approach allows us to deflne fuzzy properties such s fuzzy injectivity,

fuzzy surjectivity, fuzzy continuity for an ordinary function (see [3]). Let us

give, for Instance, a possible definition of the fuzzy surjectivity: f from X to Y

is sald to be fuzzily surjective on the fuzzy set B of Y {f and only if
(3) v yeY, IxeX, uR(y,f(x))>uB(y)

where ™ is a fuzzy relation of proximity on Y (i.e., reflexive: M. (v y)=|,
YyeY, and symmefrlcal

NR(Y»Y')‘NR(Y'»Y). vyeY, vy'eY).

(3) means "the more y belongs to B, the closer is a neighbor of y which has an
antecedent x in the sense of f" ([3]).
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2. Instead of considering a function f with a fuzzy domain A and a fuzzy range B,

it may be Interesting to deal with functions having just a fuzzy domain A on X and
no constraint on the range Y. However, f is still fuzzily constrained in the sense
of (1) because uY(y)-»l z_uA(x) with y=f(x). Then the image of A by f is the fuzzy

set: <y, sup uA(x)) » YEY
x,y=f(x)

I A x such that y=f(x), then the membership degree of y to the fuzzy image of A Is
zero. . uA(x) may be interpreted as the dégree to which f is applicable to x.
Similarly If f has an ordinary domain X and a fuzzy range Bon Y ( (1) no more holds),
where uB(y) is Interpreted as a degree of "acceptability" of vy,

{(f(x), uglf(x))), xeX } is the acceptable image of X by f.

If f has a fuzzy domain A and a fuzzy range B, the acceptable image of ‘A by f Is
the fuzzy set (using the operator "min" for the Intersection of fuzzy sets):

Yy, min| sup uA(x), uB(y) , YEY ,
' X, y=f(x)

which is equal to (if (1) holds):

(y, " sup uA(x)), yeY
- %, y=f(x)

i.e., the image of A by f is accepiable.

Lastly, If the fuzzy domain (or the fuzzy range) !s defined as a fuzzy set of

ordinary sub-domains (or subranges), say AI,..l,Am:
A={(u(l),A'), i=l,m} A'CX

then A may be reduced as

A= (x,' maxu(l)), xe X }
I,xé:Ai
or A= x, min u(l)) , XeX for examples.
I,xE:Al
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3) Ordinary functions between two sets of fuzzy sets:

X, X', y=x#x!

v

y i Let f be an ordinary fuz;%lon from X to Y. This function may be extended as a %
! ‘ function F frémﬁX) toc Y)ﬁ(X) denotes the ordinary set of the fuzzy sets of 4
fs . ) -~

: E "X). The membership function uv of the fuzzy set ¥=F(X), where x denotes a fuzzy .
E sef of X, Is glven by the extenslon principle (see Zadeh [13]: %
; | ]
= _ _ .

g (4) uv(y)-xk(i)(y)— SE? u;(x) k

3 E : xef (y) ;
N =0 1t £ (y)= ¢ ;
P = : . ;
; P - where f I(y) Is the set of antecedents of vy. %
‘ : . 3
i : (4) Is not formally different from the definltion of the image by f of its fuzzy %
‘ g domtn A, but here the point of view Is different. We are no longer Interested %
i ;'~bal Image of a domaln, but rather In the images of fuzzy points, fuzzy %
? -t~ r, *he domain of f. X may be Interpreted as a possibility distribution of ﬁ
i val - nossitly clustered around some mean value. g
| E
P, The -5 ~fctiun of F to X Is f. Moreover, [t shouid be noticed that the image of 3

[ kG

{ a .uzvy ¢! ~vour (A,x) is (A,f(x)), where A denotes a membership value. ;

| ' :

: n 1.  of the operation *, (4) Is written: :

-2

'»;J i = = ! !
(5) uv(y)-ui ® 52,(y) sup m(n(ui(x),ui,(x )) ;
j

b
b

where ® Is the operation fromeQX)xéﬁ&) +o£§QY), Induced from *, The addition
of fuzzy numbers can be deflned uslné.(S), for Instance. (See Dubols and Prade,

é

£2],03D. . 4

The composition of two extended functions F fromﬁ??X) fQ£§QY) and G fromijY) §

, +q£§QZ) respectively Is the extension H of the composition of the original func- f

ﬁ tions f and g. ' ' ?
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~ Proof:
.Sup sup  Us(x) = " sup Mg (X) =) (2)
-1 -1 X -1 H(X) Q.E.D.
yeg (z) xef "(y) | xe(g.f) (2)

I+ should be clear that all the ordinary functions from£§QX) +o£51¥) are not
extensions of +the ordinary functions from X to Y.

Y) Fuzzy functlon of a non-fuzzy varliable [3]

Two points of view will be succeéssively devaloped:
- the image of xeX Is a fuzzy set F(x) of Y.
- x |s mapped In Y through a fuzzy set of functions.

1) Jiggling functlions:

A Jiggling (or fuzzifying) function from X to Y Is an ordinary function from X to
Y): ‘
Fiox -—-—»?(x)

The image of » Is blurred by the "Jiggling" of the function. F(x) may be &slso
of as a possibility distribution of a non-fuzzy image of x.

-~

The notion of Jliggling function is equivalent to that of fuzzy relation. f Is
associated with a fuzzy relation In R such that:

(6) VW xeX, VyeY, M7 %Hp(y )

The compoét?ton of jiggling functions Is defined by

‘(7) u(g°f)(x)(2) ;:e min (uf(x)(y),ua(y)(z))

where § is.a jiggling function from Y to Z.

.Thls composition may be interpreted as follows: glven an intermedliary polnf Y,
+he membership of zeZ In (g°f)(x) s bounded by the memberships of y In f(x) and
z In 3(y). The membership of z in (g°F) (x) corresponds to the best intermediary

point.

e R
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This composition is different from the classical compos!tion of functions, as
f and §, being functions from X 'mé‘ Y) and from Y +
together.

Z), cannot be composed

A fuzzy binary operation on X is a jiggling function from XxX ?0557X).

Remaiks:
I Jiggling functions may have fuzzy domaln A and fuzzy range B in the sense of a):

(8) sup min (u;(x)(y),uA(x)) <ua(y), v y.
XEX -

When f(g) is non fuzzy, l.e., 3! y*, u;(x)(y*)=l.and Vv yfy* ;(x)(y)=0.
(8) glves back (i?. '

Using (7), one may prove that if § has B as a fuzzy domain and C as a fuzzy range,
then °F has A as a fuzzy domain and £ as a fuzzy range. Negolta and Relascu [10],
who considering (8) in the framework of fuzzy relations, also introduced fuzzy
relations (il.e., jiggling functlions) such as:

(9) uR(x,y)au;(x)(y)i_mln (uA(x),uB(y)) .

(The link between x and y cannot be stronger than the degrees of membership of x
and y to the domalin and the range raspectively.)

If B is normalized, by using (7) it can be proven that jiggling functions with
fuzzy domain and fuzzy range in the sense of (9) can also be composed.

2. Jiggling functions may be extended in the sense of B): 1, which_is a function
from X TQ£§QY), Is extended in F, which is a function fromf§?X) To£§?Y) by:

(10) WE, o~y (y)= sup min (uo(x),uy, (y))
F(x) XEX X f(x)
One may verify that
2, ,avy (2)= sup min (u~kx),u ~0 % (z))
G(F(X)) xeX X (g% f)(x)

This shows that the extension of §°F defined by (7) and (I1) js nothing more than
the ordinary composition of F and G, functions fromfé%X) +o£§qY) and fromféﬁY) to

Z) respectively.

- wme-
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Lastly, it must be pointed out that there ordinary functions fromGA X) Zat)
which are not extended jiggling (or not jiggling) functions). See [3J].

’

}i) Fuzzy bunch of functions

-

A fuzzy bunch J;VBf ordinary functions from X to Y Is a fuzzy set of Yx: each
function f from X to Y has 2 membership degree Hj;?¥) in J;V-. A Jiggling func-
tion f may be viewed as a fuzzy bunch (see [3]). A fuzzy bunch, though, Is not
canonical iy reducible To.Jlggllng functions, since there may be two functions f
and g from X to Y such that:

3 x, f(x)=g(x)=y with uh577f>fu55779>.

The degree of membership of y to the fuzzy image of x by hj*?hay then be ambiguous.
This can never happen with a Jiggling function as the membership degree of y to
?ﬁx) Is unliquely defined by u;(x)(y)=uR(x,y). A fuzzy bunch may he considered as
a multimodal fuzzy relation.

LeTHSV'énd Sg?be two fuzzy bunches from X to Y and from Y to Z respectively. The

| §
’ composition =z F 0 .is defined by )

f,g
h=gof

# ~un W)= sup min (WFT(H, KRG . : :

(I11) generalizes (7).

ey Y N i

3, Partition and Fuzzy Sets.
For the sake of simplicity, only partitions In two parts will be considered.

Let A be a fuzzy set of X and P an ordinary predicate on X, P induces a partition
on X: the set of elements xeX such that P(x) is true and the set of elements 3

xeX such that=)P(x) is true. |In the same way.A is partitioned in AI and A2 such }
. that ) . ’ )

' uA(x) If P(x) is true uA(x) s ™ P(x) is true

' u = . M =
E ' AI(X) : Az(x)

0 otherwise 0 otherwise

3 G
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only a fuzzy one:

Let us now consider the fuzzy par+l+lon of a set, namely X. Let P be a fuzzy
predicate. The truth-value, v(P(x)) of P(x) betongs to [0,1]. Thus P
Induces a fuzzy set Q:

uQ(x)=v(P(x)) .

The complement § of Q Is

W (x)=1=v(P(x))=v(q P(x)) .
Q

Q and 6'are overlapping, and (Q,§) Is not an ordinary parflflon of X, but rather

.

¢

(x)= - )
uQ G'X) min (uo(x),| uo(x))#o 1f uQ(x)#l or 0
N

uq;p&x)=max (uQ(x),I-uQ(x))#l If Q(x)#l or 0

N.B. In the sense of the operators M and U of bold intersection and bold

union:

Ha A B(><)='ma>< (O’EA(X)"'“B(X)'I)
Ma U,B(x)=mln (l,uA(x)+uB(x))
(Q,0) is a partition: Q AQ= o; QW Q=X.

4, Conciuding Remarks about Fuzzy Functions and Operations.

There are basically two kinds of functlons or operations Involving fuzziness:
* Those functions and operations which operate on and produce fuzzy sets,
values or numbers in a non-fuzzy manner: e.g.,

- the extension In the sense of 2.B8. of any function from TR to R ;

- the operations of unlon, Intersection, complementations on -
fuzzy sets;

- the addition and the multiplication of fuzzy numbers.
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¢ The fuzzy functions and fuzzy operations which, operating In a fuzzy
manner on fuzzy or non-fuzzy quantitites, produces fuzzy ones. The Jiggling
functions and the fuzzy bunches of functions Introduced in 2.y. are of that
kind; e.g., ‘
- a function-which Increases x sligntly:

X i X(DI=Y

where I s a small fuzzy number-and ® Is the symbo! of the extended
addltion. V¥ is the possibllity distribution of results got from x

by Increasing It slightly.

RS s oot s
[ 4

- a fuzzy'operation on MR: to approximately take the arithmetic mean

LR
e

of two real numbers x and y: ' y

T,

x¥y=x © i@y( | @X)=%

wheré(:) denotes the extended mul+iplication of fuzzy numbers and .
(® the extended substraction. A Is a fuzzy number such that gé
ux(l/2)=f. Z Is a possibillty distribution of values clustered f
around (x+y)/2.

Most of the functions Invulving fuzziness Introduced In V.2. have been considered

S T

g T

In the framework of category theory. For instance, functions considered in 2.a.
3 satisfying (1), In 2,y. with (8), and in 2.y. satisfying (9), correspond to the f
% morphisms of categories Set(L), Set (L) and Se+f(L) respectively. Moreover, j
" ; the dichotomy discussed in this remark corresponds to the difference between: (5
i . . . i
j - ordinary categorlies of fuzzy sets and i
' - fuzzy categories. g
Two, points of view corresponding to fuzzy bunches and jlgg!ing Junctlons exist %
- . «‘4

e

concerning fuzzy categories. See Negoita and Ralescu [I1] for detalls. Also

! ' see [3] for a short survey.

Although the link between categories and HOS representation has been recently :
emphazised (see "A Note on Arrows and Contro! Structures: Category Theory and é
HOS" by S. Cushing in [8]), it has seemed preferable to present here the ‘ ;
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functions Involving fuzziness In & more elementary way as sophisticated forma-

| Isms are not perhi.ps sultable In working with concepts at this early stage of
development. ‘

IV. HOS METHODOLOGY AND FUZZY SETS

?Lef us begin with the question: "What |s a fuzzy data type?": Naturally there

are several kinds of "fuzzy data types", more or less fuzzy, depending on
where fuzziness lies.

|

| First, only the members of the data-type may be fuzzy entities.. The primitive
! and derived operations, though, are ordinary ones. The axioms are also of a

% classlical nature. We have, for Instance, the data~type "Fuzzy Set" (which Is
i - different from the data-type "Set"), which Is also a data-type in the ordinary
; sense. |t corresponds to the non-fuzzy manipulation of fuzzy quantitles.

f Control structures ars always the same.
}. .

|

i

|

}

i

" A little more fuzzy gives the concept of fuzzy rejecrion. Fuzzy rejection
~corresponds to the ordinary functlons equipped with a fuzzy domaln A on X
(see V.2, ). |t means that all the elements of X are not equally sultable
as Inputs of the functlion under consideration. Thus each x Iis rejected with
" a degree equal to I-uA(x) (1f uA(x)=0 the output of ‘the function Is the.classical
REJECT). The fact that a function has 2 fuzzy domain is compatible with the set
partition control structure (see™ V .3).

Already intrinsically fuzzy are the data types where some primitive operations
o functlions are fuzzy (i.e. are Jlggling functions In the sense of V .2.B).
The members may or may not be fuzzy. The axioms are classical ones: It Is not
because an operation is fuzzy that It Interacts In a fuzzy manner with itself or
other ones. Two examples of such operations were given In Il1.4 . Jiggling
functions/operations maybe viewed as ordinary functlions, symbollically from X to
(Y). 1t Is as jiggling functions from X to Y, though, that these functions are
composed by formula (7). Formally, we have the abstract control structure:

,.
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Z=R(x)

C2=§(y) §=f (x)
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(7) may be formally rewritten as

H(x,z)= sup min (G(y,z),F(x,y))
yeY

which may be decomposed In ordering control maps provided that we have the
primitive operations "mlq", and "sup" of a given function on a glven domain.

Lastly, the axloms of a data type may be themselves fuzzy, even If the operations
or/and the members are not fuzzy. What 1s a fuzzy axiom? I+ Is a fuzzy desciip-
tion'of the way operéflons are allowed o Interact with one another. The
description Is fuzzy because the allowed Interaction is supposedly Il!l~known.

For Instance, we may say that the operation % Is approximately commutaiive If

A%B |s approximately équal to BxA for all A and B where "approximately equal"

Is model led by a fuzzy relation. * Is approximately commutative In another

., sense |f AxB=BxA for most of the A and B. Fuzzy axlioms are lingulstic state-

ments on the allowed [nteractions of the operations. Linguistic statements can
be r-~nresented using possibllity distributions - see Zadeh's PRUF [ig]. It

.seems possible to develop fuzzy mathematics by starting with fuzzy axioms and

using approxfma+e reasoning (see Zadeh.[17]). Fuzzy mathematics is fuzzy manip-
ulation of entlties and Is completely different from mathemutics of fuzzy sets,
which is simply classical mathematics (ordinary manipulation) of "new" entities -
the fuzzy sets. In the framework of elementary geometry, Zadeh, In Part C of
Ct5], has glven some examples of "fuzzy mathematics", '

Thus, there are several kinds of fuzzy data types as members, operations, and
even axloms may be fuzzy Independentiy of each ot .,

V. FUZZY RELIABILITY

What Is classical rellabllity? Let us quote Margaret Hami|ton and Saydean Zeldin [5]:

"For a rellable system Is 2 predictable system; [+ does exactly
what 1+ ls Intended to do. In attempting to defline a system as

a function, we already have Incorporated an element of reliability
In that we assert that for every value of "x" we expect to produce
one and only one value for "y". That Is, we expect the system fo

predictably produce the same result each time we apply f [y=f(x)]
to a particular value."

I+ 1s clear that the functions lnvolving fuzziness which have been presented In
V.2.a and V.2.8 are rellable In the above classical sense.
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Obviously, It Is not true for fhe Jlggllng functlions or the fuzzy bunches. Let
us consider a Jlggllng function f from X to Y. The Image of x by + s yaf(x)
If we regard § as a fuzzy set (l.e. we conslder ¥ rather as an ‘ordinary function

- from X to §(Y)), ¥ Is reliable In the ordinary sense:

v xeX, 31y (or A§) such that '9=;(x).

If ¥ 1s viewed as a possblilty distribution on the value of the non-fuzzy output

y of ¥ when the Input 1s x, though, ¥ 1s no more abéolu*ely reliable, as we have

only an approximate idea (modelled by y) of the more or less poéslble outputs of
f when the tnput Is x. It is from this polnt of view that the jiggling functions

~are composed by’ (7). "1t is then only possible to speak of fuzzy rellabliiity as

the behavior of the function Is only approximately known.

VI. CONCLUDING REMARKS

" Hos methodologyy seems to be a good guldeline to Imagining what may be the
.speclflcation of fuzzy systems. Even If some of the concepts presented in

sectlion V seem totally removed from logic as we apply |+ today, we should

keep In mind that people, on the whole, tend to ¢ling to many preconcelved'tdeas
concerning the structure of mathenatlics and how to use It to solve the problems
of today. |f we can open-mindedly look at these pfoblems with fuzzy concepts
and approaches within our sights, we might be surprised to see that complex

and difficult quesflons may be easier to grasp when presented In a fuzzy way.
Obviously, this Is par+lcu|arly true In the fleld of soft sclences.
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